
IJARCCE 
ISSN (Online) 2278-1021 

ISSN (Print) 2319 5940 

 
International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 5, Issue 2, February 2016 
 

Copyright to IJARCCE                                                      DOI 10.17148/IJARCCE.2016.5209                                                   33 

Image Intensification using Various  

Edge Detection Mechanisms 
 

Reena Jangra
1
, Abhishek Bhatnagar

2 

M.Tech Student in C.E, IIET (Jind) under KUK, India1 

Asstt. Prof. in C.S.E, IIET (Jind) under KUK, India2 

 

Abstract: Edge (Boundary line)s are borders between various textures. Edge (Boundary line) can be defined as 

discontinuities in image(picture) intensity from one pixel to another. Edge (Boundary line) s for an image (picture) are 
always essential character that suggest an pointer for a better-quality frequency. Detection of Edge (Boundary line)s for 

an image(picture) may help for image(picture) segmentation, data compression, & also help for well identical, such as 

image(picture) modernization & so on. There are many way to make Edge (Boundary line) detection. Most universal 

method for Edge (Boundary line) detection is to analyze discrimination of an image(picture). Edge (Boundary line) 

detection is an image(picture) processing technique for finding borders of objects within image(picture)s. It works by 

detecting discontinuities in brightness. Edge (Boundary line) detection is used for image(picture) segmentation & data 

extraction in areas such as image(picture) processing, computer vision, & machine vision. Common Edge (Boundary 

line) detection algorithms include Sobel, Canny, Roberts, Prewitt & fuzzy logic methods. 
 

Keywords:  Edge (Boundary line) detection, Canny Edge (Boundary line) detection, Sobel operator. 

 

INTRODUCTION 
 

Edge (Boundary line) detection is a set of mathematical 

methods which aim at identify points in a digital 

image(picture) at which image(picture) intensity changes 

sharply or, more formally, has discontinuities.  
 

Points at which image(picture) intensity changes sharply 

are typically organized into a set of curved line segments 

termed Edge (Boundary line)s.  
 

Same problem of verdict discontinuities in 1D signals is 

known as step detection & problem of verdict signal 

discontinuities over time is known as change detection.  
 

Edge (Boundary line) detection is a fundamental tool in 

image(picture) processing, machine vision & computer 

vision, particularly in areas of feature detection & feature 

extraction. 
 

 
 
 
 

 
 

Fig. 1[ Detection of highlighted points] 

 

 
EDGE (BOUNDRY LINE) PROPERTIES 
 

The Edge (Boundary line)s extracted from a two-

dimensional image(picture) of a three-dimensional scene 

can be classify as either: 

 viewpoint dependent  

 viewpoint independent. 
 

Viewpoint dependent Edge (Boundary line) may change as 

viewpoint changes, & typically reflects geometry of scene, 

such as objects occluding one another. 
 

Viewpoint independent Edge (Boundary line) typically 

reflects inherent properties of three-dimensional objects, 

such as surface markings & surface shape.  
 

A typical Edge (Boundary line) might for instance be 

border between a block of red color & a block of yellow.   
 

For a line, there can therefore usually be one Edge 

(Boundary line) on each side of line. 

 

PROBLEM  FORMULATION 
 

Edge (Boundary line) detection is a basic tool used in 

image(picture) processing, basically for characteristic 

detection & extraction, which aim to categorize points in a 

digital image(picture) where intensity of image(picture) 

changes sharply & find discontinuities.  
 

Purpose of Edge (Boundary line) detection is considerably 

reducing amount of data in an image(picture) & preserves 

structural properties for additional image(picture) 
processing. 
 

In a grey level image(picture) Edge (Boundary line) is a 
local feature that, with in a neighborhood separates the 

regions in each of which gray level is more or less uniform 

with in various values on two sides of Edge (Boundary 

line).  



IJARCCE 
ISSN (Online) 2278-1021 

ISSN (Print) 2319 5940 

 
International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 5, Issue 2, February 2016 
 

Copyright to IJARCCE                                                      DOI 10.17148/IJARCCE.2016.5209                                                   34 

For a noisy image(picture) it is difficult to detect Edge 

(Boundary line)s as both Edge (Boundary line) & noise 

contains high frequency contents which results in blurred 

& unclear result. 

 

DIFFERENT  EDGE (BOUNDRY LINE) 

DETECTION METHODOLOGIES 
 

Edge (Boundary line) detection makes use of variousial 

operators to distinguish changes in gradients of grey 

levels. It is divided into two main categories. 
 

 
 

Fig2. Flowchart of Classical operators 

 

OBJECTIVES 
 

Canny Edge (Boundary line) detector have highly 

developed algorithm derived from previous work of Marr 

& Hildreth.  
 

It is an best possible Edge (Boundary line) detection 
technique as provide good detection, clear response & 

good localization.  
 

It is widely used in current image(picture) processing 

techniques with further improvements. Objective of 

research is to High light benefit of canny Edge (Boundary 

line) detection over usual Edge (Boundary line) detection 

schemes.  
 

On analyzing all these Edge (Boundary line) detection 

techniques , it is found that canny gives best Edge 

(Boundary line) detection. 
 

 Following are some points throwing light on advantages 

of canny Edge (Boundary line) detector as compared to 

other detectors discussed in this paper: 

1. Less Sensitive to noise: As compared to classical 

operators like Prewitt, Robert & Sobel canny Edge 

(Boundary line) detector is less sensitive to noise. Its uses 

Gaussian filter that removes noise at a great level as 

compared to above noise filters.  
 

2. Adaptive in nature: Classical operator have fixed 

kernels so cannot be adapted to a given image(picture). 

While performance of canny algorithm depends on 

variable or adjustable. 
 

3. Remove streaking problem: Classical operators‟ like 
Robert uses single thresholding technique but it results 

into streaking.  
 

Streaking means, if Edge (Boundary line) gradient just 

above & adjust below set threshold limit it removes useful 

part of connected Edge (Boundary line), & leave 

disconnected final Edge (Boundary line).  
 

To overcome from this drawback canny detector uses 

„hysteresis‟ technique which uses two threshold values 

_789 & _5_65 as discussed above in canny algorithm. 

 

METHODOLOGY/ PLANNING OF WORK 
 

Our plan is to use MATLAB programming software as a 

tool for developing this Biomedical Image(picture) 

Processing software package.  
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
 

Fig 3. Flowchart of canny Edge (Boundary line) 

detection 

SMOOTHING: Remove noise by using gaussian  

filter 

COMPUTE GRADIENT:Edge (Boundry line) 

should be marked where  gradient of 
image(picture) large 

NON MAXIMUM SUPRESSION: Only local 

maxima should be marked as a Edge (Boundry 
line) 

HYSTRESIS THRESHOULDING: Final Edge 

(Boundry line) are determine bye supressing all 

Edge (Boundry line)s that are not  connected to a 
very strong Edge (Boundary line). 

END: Input image(picture) resulted in Edge 
(Boundry line) extracted image(picture) 

START 

                        Input  image(picture) 



IJARCCE 
ISSN (Online) 2278-1021 

ISSN (Print) 2319 5940 

 
International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 5, Issue 2, February 2016 
 

Copyright to IJARCCE                                                      DOI 10.17148/IJARCCE.2016.5209                                                   35 

Such techniques (image(picture) improvement, filtering, 

segmentation & morphological operation) in Biomedical 

Image(picture) Processing.  
 

This software package should capable to display input 

image(picture), output image(picture) & various click 

button for various image(picture) processing techniques as 

well as description of techniques so students will learn 

effectively application on how biomedical image(picture) 

is analyzed instead of learning mathematical algorithm for 

such techniques. 
 

A number of software packages for image(picture) 

processing & editing have increased over years. various 

steps of image(picture) processing make each of software 

packages differ with various relative strengths.  
 

Having accurate software & suitable processing 

techniques is necessary to assurance reliability of data 
processing.  

 

IMPLEMENTATION 
 

Code of canny in mat lab 
 

function [sFinal,thresh] = canimp(image1, mLow, mHigh, 

sig) 

if (nargi < 1) 

  error(' Need a NxN image matrix'); 

elseif (nargi ==1) 
  mLow = 0.5; mHigh = 2.5; sig = 1; 

elseif (nargi == 2) 

  mHigh = 2.5; sig = 1; 

elseif (nargi == 3) 

  sig = 1; 

end 

origImage = image1; 

if (ndims(image1)==3) 

  image1 =double(rgb2gray(image1)); 

end 

 
% DERIVATIVE OF GAUSSIAN 
 

dG=dgauss(sig1); 
 

[dummy, filterLen] = size(dG); 

offset = (filterLen-1)/2; 
 

sy = conv2(image1, dG ,'same'); 

sx = conv2(image1, dG','same'); 

[m, n]=size(image1); 

sx = sx(offset+1:m-offset, offset+1:n-offset);  
sy = sy(offset+1:m-offset, offset+1:n-offset);  

sNor = sqrt( sx.^2 + sy.^2 ); 

sAngle = atan2( sy, sx) * (180.0/pi); 

sx(sx==0) = 1e-10; 

sSlope = abs(sy ./ sx); 

sAorig = sAngle; 

y = sAngle < 0; 

sAngle = sAngle + 180*y; 

binDist =    [-inf 45 90 135 inf]; 

[dummy, b] = histc(sAngle,binDist); 

sDiscreteAngles = b; 

[m,n] = size(sDiscreteAngles); 
sDiscreteAngles(1,:) = 0; 

sDiscreteAngles(end,:)=0; 

sDiscreteAngles(:,1) = 0; 

sDiscreteAngles(:,end) = 0; 

sEdge (Boundry line)points = zeros(m,n); 

sFinal = sEdgepoints; 

lowT  = mLow * mean(sNor(:)); 

highT = mHigh * lowT; 

thresh = [ lowT highT]; 

 gradDirn = 1; 

idxs = find(sDiscreteAngles ==  gradDirn); 

slp = sSlope(idxs); 
gDiff1 = slp.*(sNor(idxs)-sNor(idxs+m+1)) + (1-

slp).*(sNor(idxs)-sNor(idxs+1)); 

gDiff2 = slp.*(sNor(idxs)-sNor(idxs-m-1)) + (1-

slp).*(sNor(idxs)-sNor(idxs-1)); 

okIdxs = idxs( gDiff1 >=0 & gDiff2 >= 0); 

sEdge points(okIdxs) = 1; 

 gradDirn = 2; 
 

idxs = find(sDiscreteAngles ==  gradDirn); 

inSp = 1 ./ sSlope(idxs); 

gDiff1 =   inSp.*(sNor(idxs)-sNor(idxs+m+1)) + (1-

inSp).*(sNor(idxs)-sNor(idxs+m)); 
gDiff2 =   inSp.*(sNor(idxs)-sNor(idxs-m-1)) + (1-

inSp).*(sNor(idxs)-sNor(idxs-m)); 

okIdxs = idxs( gDiff1 >=0 & gDiff2 >= 0); 
 

sEdge points(okIdxs) = 1; 

 gradDirn = 3; 

idxs = find(sDiscreteAngles ==  gradDirn); 

inSp = 1 ./ sSlope(idxs); 

gDiff1 =   inSp.*(sNor(idxs)-sNor(idxs+m-1)) + (1-

inSp).*(sNor(idxs)-sNor(idxs+m)); 

gDiff2 =   inSp.*(sNor(idxs)-sNor(idxs-m+1)) + (1-

inSp).*(sNor(idxs)-sNor(idxs-m)); 
 

okIdxs = idxs( gDiff1 >=0 & gDiff2 >= 0); 

sEdge points(okIdxs) = 1; 

 gradDirn = 4; 

idxs = find(sDiscreteAngles ==  gradDirn); 

slp = sSlope(idxs); 

gDiff1 = slp.*(sNor(idxs)-sNor(idxs+m-1)) + (1-

slp).*(sNor(idxs)-sNor(idxs-1)); 

gDiff2 = slp.*(sNor(idxs)-sNor(idxs-m+1)) + (1-

slp).*(sNor(idxs)-sNor(idxs+1)); 
 

okIdxs = idxs( gDiff1 >=0 & gDiff2 >= 0); 
sEdge points(okIdxs) = 1; 

sEdge points = sEdge points*0.6; 

x = find(sEdge points > 0 & sNor < lowT); 

sEdge points(x)=0; 
 

x = find(sEdge points > 0 & sNor  >= highT); 

sEdge points(x)=1; 

oldx = []; 

             x = find(sEdge points==1); 

while (size(oldx,1) ~= size(x,1)) 

  oldx = x; 

  v = [x+m+1, x+m, x+m-1, x-1, x-m-1, x-m, x-m+1, x+1]; 
  sEdge points(v) = 0.4 + sEdge points(v); 
 

  y = find(sEdge points==0.4); 

  sEdge points(y) = 0; 



IJARCCE 
ISSN (Online) 2278-1021 

ISSN (Print) 2319 5940 

 
International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 5, Issue 2, February 2016 
 

Copyright to IJARCCE                                                      DOI 10.17148/IJARCCE.2016.5209                                                   36 

  y = find(sEdge points>=1); 

  sEdge points(y)=1; 

  x = find(sEdge points==1); 

end 

x = find(sEdge points==1); 

sFinal(x)=1; 
 

figure(1); 

imagesc(sFinal); colormap(gray); axis image; 
 

Running canimp code 
 

>>x=imread(„Tulips.jpg‟) 

>>imagesc(x) 
 

 
 

Fig. 4:  original picture 
 

>> canny(x,.5,.5,.5) 
 

 
 

Fig. 5: After applying canny 

 

APPLICATIONS 
 

It finds practical application in Runway Detection & 

Tracking for Unmanned Aerial Vehicle, in brain MRI 

image(picture), cable insulation layer measurement, Real-

time facial expression recognition, Edge (Boundry line) 

detection of river regime, Automatic Multiple Faces 

Tracking & Detection.  
 

Canny Edge (Boundry line) detection technique is used in 

license plate reorganization system which is an important 

part of intelligent traffic system (ITS), finds practical 

application in traffic management, public safety & military 

department. It also finds application in medical field as in 

ultrasound, x –rays etc. 

 

FUTURE  SCOPE  & CONCLUSION 
 

In this research we have studied & evaluate various Edge 

(Boundry line) detection techniques. We have seen that 

canny Edge (Boundry line) detector gives enhanced result 

as compared to others with some positive points.  
 

It is less sensitive to noise, adaptive in nature, resolved 

problem of streaking, gives good localization & detects 

sharper Edge (Boundry line) as compared to others.  
 

It is consider as best possible Edge (Boundry line) 

detection technique hence lot of work & enhancement on 
this algorithm has been done & additional improvements 

are possible in future as an improved canny algorithm can 

detect Edge (Boundry line)s in color image(picture) 

without converting in gray image(picture), improved 

canny algorithm for automatic extraction of moving object 

in image(picture) supervision.  

 

REFERENCES 
 

1. The Technology of Night Vision by Harry P. Montoro, ITT Night 

Vision http://www.photonics.com/EDU/Handbook.aspx?AID=25144 

2. A. Marion An Introduction to Image Processing, Chapman & Hall, 

1991 

3. Azeema Sultana, Dr. M. Meenakshi, “Design & Development of 

FPGA based Adaptive Thresholder for Image Processing 

Applications” ,on line access  

4. Gerhard X. Ritter; Joseph N. Wilson, “ Handbook of Computer 

Vision Algorithms in Image Algebra” CRC Press, CRC Press LLC 

ISBN:0849326362 Pub Date: 05/01/96 

5. N. Nacereddine, L. Hamami, M. Tridi, & N. Oucief , “Non-

Parametric Histogram-Based Thresholding Methods for Weld 

Defect Detection in Radiography “ ,online access. 

6. Otsu,N., "A Threshold Selection Method from Gray-Level 

istograms,"IEEE Transactions on Systems, Man, & Cybernetics, 

Vol. 9, No. 1, 1979, pp. 62-66.  

7. Elham Ashari , Richard Hornsey, “ FPGA Implementation of Real-

Time Adaptive Image(picture) Thresholding” ,online access 

8. http://en.wikipedia.org/wiki/Digital_image(picture)_processing  

9. J. Canny, “A Computational Approach to Edge  Detection,” IEEE 

Trans. Pattern Analysis & Machine Intelligence, PAMI-8, 6, 

November 1986, 679–698. 

 

  


